US009235494B2

a2 United States Patent

US 9,235,494 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

(56)

Gautam
AUTOMATED CODE ANALYZER
Applicant: Syntel, Inc., Troy, MI (US)
Inventor: Ritesh Gautam, Mumbai (IN)
Assignee: Syntel, Inc., Troy, MI (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 14/213,429
Filed: Mar. 14,2014
Prior Publication Data
US 2014/0282445 Al Sep. 18, 2014
Related U.S. Application Data
Provisional application No. 61/781,267, filed on Mar.
14, 2013.
Int. CL.
GO6F 9/45 (2006.01)
GO6F 1136 (2006.01)
U.S. CL
CPC i GO6F 11/3616 (2013.01)
Field of Classification Search
USPC e 717/143
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5,659,753 A * 8/1997 Murphycccc..... GOGF 8/433
717/143
6,275,223 B1* 8/2001 Hughes GOG6F 3/0483
715/751
6,799,718 B2* 10/2004 Chancccccovevvvnenee GOGF 8/33
235/375

200

7,340,726 B1* 3/2008 Chelf ... GO6F 8/71

714/38.12

2003/0028364 Al* 2/2003 Chanetal.coeeee. 704/1

2009/0138843 Al* 5/2009 Hintonetal. 717/101

2009/0144698 Al* 6/2009 Fanningetal. ... 717/120

2010/0095277 Al* 4/2010 Chengetal. 717/127

2011/0022551 Al* 12011 Dixon ... 706/12

2011/0067009 Al* 3/2011 Hosokawaetal. ... 717/132

2012/0174061 Al1* 7/2012 McCollum GOG6F 8/33

717/106

2013/0055205 Al* 2/2013 Sereni GOG6F 8/75

717/124

2013/0290205 Al* 10/2013 Bonmassaretal. ... 705/321

2014/0282373 Al* 9/2014 Garza GO6F 8/74

717/106

2014/0282445 Al* 9/2014 Gautam 717/143
OTHER PUBLICATIONS

Jay et al., “Cyclomatic Complexity and Lines of Code: Empirical
Evidence of a Stable Linear Relationship”, J. Software Engineering
& Applications, 2009, 2: 137-143.*

Halloran et al. “High Quality and Open Source Software Practices”,
2002, retrieved from <http://flosshub.org/sites/flosshub.org/files/
HalloranScherlis.pdf> pp. 3.*

(Continued)

Primary Examiner — Marina Lee
(74) Attorney, Agent, or Firm — Dykema Gossett PLL.C

(57) ABSTRACT

Systems, methods, and computer program products for ana-
lyzing source code are disclosed. The system includes a file
reader module on a computer, a parser module on a computer,
a metrics accumulator module, and a reporting engine on a
computer. The file reader module may read an input source
code file. The parser module may parse source code in the
source code file into source code components. The metrics
accumulator module may analyze the source code compo-
nents in accordance with one or more rules to generate appli-
cation metadata. The reporting engine may use the generated
application metadata to generate a report of the analysis.

18 Claims, 2 Drawing Sheets

204

Utilization of Programming Languages

VB.Net

ove

3 PowerBuilder
aC#

8 JavalJ2EE

Size vs Gomplexity
6000

v O MES
E?, 5000 o¥S e
k=4
3 -
& 000 & Tioketing O 5aL O >
£ g0p |—&Padng.
T © SPC
§ 1000|—oHist © Iny
0

[20 40 60 80 100 120 140

Size (KLOC)
210 212 214 216 218

Technology Relevance ion K Nature of Sze inabi

- - gy SNo| Application Kamg Aoulaton Language K00) Complesty) ™| ®
,, 7 5% 2% T[VESmemoy____{cors he | 213 | Tn | 8w
: b 2 { CoolStrip Ticket Inhouse \ 22 1 55 7358

35% _1 el sem b 3| Accounting 0078 PoweBudder| 953 | 48603 | 5490

= ﬂ < 13 ﬂ : 4|Paging Application {Vendar Developed|C# 1011 212 7059

8 I < I et I ‘ . 5|SPCPro Vender Developed [JavallZEE | 142 | 1523 788
K § 5 £ g £z 6 [TineCard s [w 1028 | 5484 | 5472
§ 2§ 2 A 7| Vs Soedtec[o0rS o |23 [s | @b
§ g i g g8 g 8 Industrial SOL £0TS VB Net 3 2% 7885
= g § ¢ | Sequence Scheduler [Inhouse [Poverbuicer[732 [30078 | 8148

g 10 Historian Inhouse [tz [102 [w0¢ [5000

206~

208 >

US 9,235,494 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Micro Focus Enterprise Analyzer” available at http://www.
microfocus.com/products/enterprise-analyzer/enterprise-analyzer/
index.aspx (retrieved Apr. 9, 2015).

“Cast Application Analytics Dashboard” available at http://www.
castsoftware.com/products/application-analytics-dashboard?GAD-
SEOI (retrieved Apr. 9, 2015).

“Smarter Outsourcing for SI and Client” available at http://www.
microfocus.com/ (retrieved Apr. 9, 2015).

“ASG Effective Application Management™ available at http://www.
asg.com/Portfolio/Systems/ APPLICATION-MANAGEMENT.aspx
(retrieved Apr. 9, 2015).

“ASG Smart Catalog” available at http://www.asg.com/smart-cata-
log/asg-viewdirect.aspx (retrieved Apr. 9, 2015).

“Business Rule Manager” available at http://www.microfocus.com/
products/enterprise-analyzer/enterprise-analyzer/business-rule-
manager.aspx (retrieved Apr. 9, 2015).

“Code Analysis Tools” available at http://www.castsoftware.com/
products/code-analysis-tools (retrieved Apr. 9, 2015).

“Next Generation Approaches to Application Analysis” available at
http://www.hathasystems.com/software-analysis-solutions. htm
(retrieved Apr. 9, 2015).

“Data Migration and ETL” available at http://www.hathasystems.
com/software-analysis-solutions-dmetl.htm (retrieved Apr. 9, 2015).
“Enterprise View” available at http://www.microfocus.com/prod-
ucts/enterprise-analyzer/enterprise-analyzer/enterprise-view.aspx
(retrieved Apr. 9, 2015).

“Extracting System Knowledge to Manage Risk™ available at http://
www.hathasystems.com/ (retrieved Apr. 9, 2015).

“Improved Code Quality” available at http:/www.castsoftware.com/
solutions/improve-code-quality/overview (retrieved Apr. 9, 2015).
“HTWC ICON” available at www.htwe.com/download/brochures/
ICON-INFO-EN.pdf (retrieved Apr. 9, 2015).

“Re-Platforming” available http://www.hathasystems.com/soft-
ware-analysis-solutions-replat.htm (retrieved Apr. 9, 2015).
“Prevent, Measure, Improve” available at http://www.castsoftware.
com/Solutions (retrieved Apr. 9, 2015).

“Software Maintenance” available at http://www.hathasystems.com/
software-analysis-solutions-maint.htm (retrieved Apr. 9, 2015).
“Visual Cobol: The Agent of Change” available at http://www.
microfocus.com/downloads/visual-cobol-the-agent-of-change-
211036.aspx (retrieved Apr. 9, 2015).

“Software Compliance” available at http://www.hathasystems.com/
software-analysis-solutions-comp.htm (retrieved Apr. 9, 2015).

* cited by examiner

US 9,235,494 B2

Sheet 1 of 2

Jan. 12, 2016

U.S. Patent

W wwev e TINAS

j{panannnl
H H

AR
aseqejeq salay

—

S —

Alngereas pue Aujiqixsj4

L "9ld

auibuz bunioday

2I607SLOISUBPGI3NBSICIAIDYAIBISCOM =
EIE(ISUOISUBIX3I9ABSE0I81LI0N313LAS AOM = 5

80/~

WX &8 !
sonadoid =8
M =8
S8I01S <7 &
G3MINBIS 28
Wy e |
los <4
Bnoe <8 |
sdoe =28
| |
pod & | |
HOUWRLOY 2 £ ¢

Ai0jisoday apo)

cli

—

0Ll

——

Metrics Accumulator

Rules Engine

Japeay

Other Language
Parsers

COBOL Parser

l VB.Net Parser

C#Parser

/

90!

19]j043L07)

~~c0!

“90URLLLIOLIS] YBIH 10§ SMOJ[R JBY] YI0MBLLURI| 8INIBYLIIR 9|qISUSIXS UB Ylim paubisaq

US 9,235,494 B2

Sheet 2 of 2

Jan. 12, 2016

U.S. Patent

80¢ ¢ 9ld
; 902
0005 | o000k | cor | e syl uzoisiH | = -
BVI8 | 8006 | 6L |lpinging 3SI0UI] Ja|Tpaydg auanbesg | § g £ § 3 =
9oL | sl | s BN 5109 T0S eUIsny] | § s 8 B _ 5 = = 8
slgr | s | ew +) S100[sappayos nsip |z § § £ & & > T § =
. _ - £ 3 3 S 2 5 8 B @©
D 0 5109 piegawi] |9 2 8 E & & g & 38 &
588/ EZSL | %L | 33ereer|padojsasg Japus 01d0dS 16 o= : -
650/ | ¢k | LI #)|podojasaq dopus | uonealddy Buibed | 7
055 | co98y | £S5 |eongamog 5100 Bununoaay | ¢ %ge
85l 895¢ | Ol ah 35104l 10431) duigjoog | 1 %eS 9go
- - ; %39
20e8 £eet | S1dl BNEA SL00 Alowany) SIN | 1 %zl %3 %5/ wmw =
0 {gymcionl 0T uoged|ddy _ ' '
fyoRURIIE Aixaoue B afendiue 10 ey GUeN LogeDlody 1ON'S aouenajay Abojouyoag
8iz-/91z-'v1e” ez’ o1z’
(907Y) 31g
oPb 0zL 00k 08 09 Oy 02 O
0 332r/ener B
sIH-0— 000} &
Y 0dS © E #Je
bubeq o 0002) 18p|Inglamod B
bag > T0S < Bupsyoil & 0008 M aro
000y 2 1BN'EA ©
3
Vo ooos 2
SIN O SA O
0009
Anxajdwo) sa azig safienfiue Bunwweifiosd jo uonezINn

A

002

US 9,235,494 B2

1
AUTOMATED CODE ANALYZER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and the benefit of, U.S.
Provisional Application Ser. No. 61/781,267, filed Mar. 14,
2013 and entitled an “Automated Code Analyzer,” the disclo-
sure of which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

This disclosure relates generally to computerized systems;
in particular, this disclosure relates to computer systems pro-
grammed to analyze source code to determine various metrics
about the source code.

BACKGROUND

Source code is a set of computer instructions written in a
human-readable format. Source code is written in a computer
programming language that can be executed by a processor
after being compiled or interpreted into machine-readable
instructions. There are circumstances in which analysis of
source code for different metrics, such as size or complexity,
can be useful. However, these can be difficult tasks to per-
form, particularly for an entire code repository. Therefore,
there is a need for a tool that analyzes source code in an easier
and more effective manner.

SUMMARY

This disclosure relates to an analysis tool in the form of an
automated source code analyzer that parses source code for
multiple computer programming languages and collects
information about the source code as per the rules it is con-
figured to execute. Data gathered by this tool can then be used
for further analysis that may include, but should not be limited
to, estimation of size, complexity and effort of maintaining an
application, analysis of the code quality, adherence to coding
standards, identifying areas of performance improvements
within the code, and the like. Illustratively, the analysis tool
can process source code for multiple languages, examples of
which include, but are not limited to, COBOL, Java, C, C++,
VB and .Net technologies. In one embodiment, the tool is
integrated with a web-based platform, and a reporting feature
of the tool can thus be used to deliver reports, in various
formats, of the data generated by the tool to a wide variety of
local and/or remote users.

This analysis tool may generally be used for a variety of
purposes, examples of which include, but are not limited to,
estimating the scope and effort required for projects, perform-
ing rule-based analysis of source code to assess code quality,
identifying performance bottlenecks, and enabling analysis
concerning total cost of ownership ideas. The tool is flexible
in that it can be configured for multiple applications, such as
metrics gathering, code quality checks, and the like, and can
be easily integrated into quality/reliability processes for, e.g.,
early detection of code quality parameters. As compared with
conventional manual source code analysis techniques, this
tool significantly reduces the time required to ascertain pro-
gram structure, execution flow, size and complexity of source
code applications.

According to one aspect, a system for analyzing source
code may comprise one or more computers; a file reader
module on at least one of the one or more computers to read

10

15

20

25

30

35

40

45

50

55

60

65

2

an input source code file containing source code written in at
least one computer programming language; a parser module
on at least one of the one or more computers and including a
plurality of parsers each specific to a different computer pro-
gramming language, the parser module to parse the source
code in the input source code file into source code compo-
nents based on syntax rules of the at least one computer
programming language in which the source code is written; a
metrics accumulator module on at least one of the one or more
computers to analyze the source code components according
to one or more rules to generate application metadata; and a
reporting engine on at least one of the one or more computers
to generate a report based on the generated application meta-
data.

According to another aspect, a computerized system for
analyzing source code may comprise one or more computing
devices including a processor, and a memory having instruc-
tions stored therein which, when executed by the processor,
cause the processor to read an input source code file contain-
ing source code written in at least one computer programming
language; parse the source code read from source code file
into source code components; analyze the source code com-
ponents in accordance with one or more rules to generate
application metadata; and generate a report of the analysis
from the generated application metadata.

In another aspect, a method of analyzing source code may
comprise reading with at least one computer an input source
code file containing source code written in at least one com-
puter programming language; parsing with at least one com-
puter the source code in the input source code file into source
code components based on syntax rules of the at least one
computer programming language in which the source code is
written; analyzing with at least one computer the source code
components according to one or more rules to generate appli-
cation metadata; and generating with at least one computer a
report based on the generated application metadata.

Additional features and advantages of the invention will
become apparent to those skilled in the art upon consideration
of the following detailed description of the illustrated
embodiment exemplifying the best mode of carrying out the
invention as presently perceived. It is intended that all such
additional features and advantages be included within this
description and be within the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be described hereafter with
reference to the attached drawings which are given as non-
limiting examples only, in which:

FIG. 11is a block diagram showing an example architecture
for the analysis tool; and

FIG. 2 shows various example reports that could be gener-
ated using the analysis tool.

Corresponding reference characters indicate correspond-
ing parts throughout the several views. The components in the
figures are not necessarily to scale, emphasis instead being
placed upon illustrating the principals of the invention. The
exemplification set out herein illustrates embodiments of the
invention, and such exemplification is not to be construed as
limiting the scope of the invention in any manner.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are suscep-
tible to various modifications and alternative forms, specific
exemplary embodiments thereof have been shown by way of
example in the drawings and will herein be described in

US 9,235,494 B2

3

detail. It should be understood, however, that there is no intent
to limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives falling within
the spirit and scope of the disclosure.

This disclosure generally relates to a computerized system
programmed with an analysis tool 100 that is configured to
analyze source code for one or more computer programs to
gather certain metrics associated with the source code. This
reduces the time required to understand an application’s pro-
gram structure, execution flow, size and complexity. When
performing a software portfolio accessment, for example, the
analysis tool 100 could be used to analyze multiple programs
to identify outsourcing opportunities, which could be a value
add during the transition phase to another program and help
understand the application’s program structure and execution
flow.

FIG. 1 shows an example system architecture that could be
used for the analysis tool 100. In the example shown, the
analysis tool 100 includes a controller module 102, a file
reader module 104, a plurality of parser modules 106, a rules
engine 108, a metrics accumulator module 110, and a report-
ing engine 112. The controller module 102 identifies the
components required to be executed and controls the loading
and execution of these components. The file reader module
104 reads input source code files, such as from a code reposi-
tory 114, which may include source code for a plurality of
different computer programs. The file reader module 104
tokenizes the source code and processes comments and com-
piler directives. The file reader module 104 works in conjunc-
tion with a parser module, which includes a plurality of pars-
ers 106, to process source code(s) based on a computer
language(s) of the source code(s) to be analyzed.

In the illustrated embodiment, the parser module includes
a plurality of parsers 106. Each parser 106 is configured to
process source code written in a different computer source
code language such that each such computer language is
handled by a different one of the parsers 106 specific to that
computer source code language. In the illustrated embodi-
ment, for example, the parser module includes a C# parser
116 that is configured specifically to parse source code writ-
ten in the C# computer programming language, a VB.Net
parser 118 that is configured specifically to parse source code
written in the Visual Basic (VB.Net) computer programming
language, a COBOL parser 120 that is configured specifically
to parse source code written in the COBOL computer pro-
gramming language and/or possibly one or more additional
parsers. The parser module processes each source code file
based on the syntax rules of its specific computer language,
i.e., using the one of the plurality of parsers 106 that is
configured to parse source code written in its specific com-
puter language, and identifies various components of that
language, such as variable declaration, classes, modules,
methods, program constructs and statements. The parser uses
various other components to compute metrics, resolve refer-
ences and generate metadata for the application.

The rules engine 108 provides a set of rules for analyzing
the source code. For example, the rules engine 108 may
include a plurality of different rules for different types of
analysis to be performed on the source code. In this manner,
a user can select the type of analysis that is desired.

The metrics accumulator 110 generates the application
metadata. The application’s metadata can be used to generate
various outputs required by the user. In some cases, the results
of the analysis may be stored in a metrics database 122. The
application metadata and information from the analysis
stored in the metrics database 122 may be used by a reporting

10

15

20

25

30

35

40

45

50

55

60

65

4

engine 112 to generate various types of assessment reports for
the user. In some embodiments, the reports could be outputed
in a format accessible by software development suites.

FIG. 2 shows examples of some types of reports that can be
generated by the reporting engine 112. A first report 200 is a
pie chart showing an analysis of programming language uti-
lization. In this example, the pie chart 202 shows the portion
each programming language is used within the code reposi-
tory that being analyzed. For example, the relative percent-
ages could correspond to relative lines of code for a first
programming language versus a second programming lan-
guage, etc. Although a pie chart is used in this example, other
types of charts could be used to show the relative program-
ming language utilization.

A second report 204 is a plot of code size (in thousands of
lines of code) versus code complexity (e.g., cyclomatic),
which is a software metric related to conditional complexity
in code, for various applications. Although the plot shown is
size versus complexity for purposes of example, other metrics
analyzed by the analysis tool 100 could be plotted.

A third report 206 is a bar graph showing the relative
weight regarding technology relevance has been analyzed
with various applications. Although a bar graph is used for
purposes of example, this data could be represented in other
forms. Likewise, the particular metric that is shown in this
graph is merely for purposes of example and other types of
metrics could be plotted.

A fourth chart 208 is a table showing various metrics for a
plurality of applications. In this example, a first column 210 is
a list with the name of a plurality of software applications. A
second column 212 describes the nature of the application,
such as whether the software was developed in-house, by a
third party vendor or is oft-the-shelf. A third column 214
describes the programming language in which the application
is written. A fourth column 216 identifies the lines of code for
each of the applications. A fifth column 218 identifies the
level of complexity based on a complexity metric. A sixth
column 220 identifies a metric regarding the maintainability
index for each of the applications. Although this information
is shown in the form of a table, other manners of visualizing
this data could be used.

Although the present disclosure has been described with
reference to particular means, materials, and embodiments,
from the foregoing description, one skilled in the art can
easily ascertain the essential characteristics of the invention
and various changes and modifications may be made to adapt
the various uses and characteristics without departing from
the spirit and scope of the invention.

The invention claimed is:

1. A system for analyzing source code, the system com-
prising:

one or more computers;

a file reader module on at least one of the one or more
computers to read an input source code file containing
source code written in at least one computer program-
ming language;

aparser module on at least one of the one or more comput-
ers and including a plurality of parsers each specific to a
different computer programming language, the parser
module to parse the source code in the input source code
file into source code components based on syntax rules
of the at least one computer programming language in
which the source code is written;

a metrics accumulator module on at least one of the one or
more computers to analyze the source code components
according to one or more rules to generate application
metadata; and

US 9,235,494 B2

5

a reporting engine on at least one of the one or more
computers to generate a report based on the generated
application metadata, the report comprising at least a
visual comparison of a number of lines of code in the
source code in a first one of the programming languages
to a number of lines of code in the source code in a
second one of the programming languages;

wherein the report includes a graphical representation of a
number of lines of source code versus a complexity of
the source code for a plurality of software applications.

2. The system of claim 1, further comprising a display
monitor,

wherein the reporting engine is configured to generate the
graphical representation on the display monitor.

3. The system of claim 1, wherein the report is a first report,

the system further comprising a display monitor,

wherein the reporting engine is configured to generate a
second report based on the generated application meta-
data, the report comprising at least a relevance of the
source code of each of the plurality of software applica-
tions;

wherein the reporting engine to generate a graphical dis-
play on the display monitor of the first report and second
report.

4. The system of claim 3, wherein the second report further
includes an origin of the plurality of software applications,
the origin of the plurality of software applications comprising
an indication of whether each software application of the
plurality of software applications is an in-house application,
third party vendor application, or an off-the-shelf develop-
ment application.

5. The system of claim 1, wherein the number of lines of
code in the source code in the first one of the programming
languages and the number of lines of code in the source code
in the second one of the programming languages are
expressed as percentages of the source code.

6. A computerized system for analyzing source code, the
system comprising:

one or more computing devices including:

a processor, and
a memory having instructions stored therein which,

when executed by the processor, cause the processor

to:

read an input source code file containing source code
written in at least one computer programming lan-
guage;

parse the source code read from source code file into
source code components;

analyze the source code components in accordance
with one or more rules to generate application
metadata; and

generate a report of the analysis from the generated
application metadata, the report comprising (i) a
plurality of applications, (ii) an origin of each of the
plurality of applications, (iii) a language of each of
the plurality of applications, (iv) a number of lines
of source code of each of the plurality of applica-
tions, (v) a complexity of each of the plurality of
applications, and (vi) a maintainability index for
each of the applications.

7. The system of claim 6, wherein the instructions stored in
the memory further include instructions which, when
executed by the processor, cause the processor to parse the
source code in accordance with the specific computer pro-
gramming language in which the source code is written.

8. The system of claim 6, further comprising a display
monitor,

15

30

35

40

45

50

60

6

wherein the instructions stored in the memory further
include instructions which, when executed by the pro-
cessor, cause the processor to control the display moni-
tor to display the report in the form of a graphical dis-
play.

9. The system of claim 6, further comprising a display
monitor,

wherein the instructions stored in the memory further

include instructions which, when executed by the pro-
cessor, cause the processor to control the display moni-
tor to display the report in the form of a graphical dis-
play, the graphical display including the number of lines
of source code versus the complexity of the source code
for each of the plurality of applications.

10. The system of claim 6, further comprising a display
monitor,

wherein the report is a first report;

wherein the instructions stored in the memory further

include instructions which, when executed by the pro-
cessor, cause the processor to generate a second report of
the analysis from the generated application metadata,
the second report comprising at least a relevance of the
source code to a software application and to control the
display monitor to display the first report and the second
report.

11. The system of claim 10,

wherein the second report further comprises an origin of

the software application.

12. The system of claim 6, wherein maintainability index
of each of the plurality of software applications is expressed
as a percentage.

13. A method of analyzing source code, the method com-
prising:

reading with at least one computer an input source code file

containing source code written in at least one computer
programming language;
parsing with at least one computer the source code in the
input source code file into source code components
based on syntax rules of the at least one computer pro-
gramming language in which the source code is written;

analyzing with at least one computer the source code com-
ponents according to one or more rules to generate appli-
cation metadata; and

generating with at least one computer a report based on the

generated application metadata, the report comprising a
graphical display of a number of lines of source code
versus a complexity of the source code for a plurality of
software applications.

14. The method of claim 13, wherein the complexity is
cyclomatic.

15. The method of claim 13, wherein the report is a first
report, further comprising generating with the at least one
computer a second report based on the generated application
metadata, wherein the second report comprises a graphical
display of a relevance of the source code to the plurality of
software applications.

16. The method of claim 15, wherein the second report
includes an origin of each of the plurality of software appli-
cations.

17. The method of claim 16, wherein each origin of the
plurality of software applications comprises in-house, third
party vendor, or off-the-shelf development.

18. The method of claim 13, wherein the report comprises
(1) a list of the plurality of software applications, (ii) an origin
of each of the plurality of software applications, (iii) a lan-
guage of each of the plurality of software applications, (iv) a
number of lines of source code of each of the plurality of

US 9,235,494 B2
7

software applications, (v) a complexity of each of the plural-
ity of software applications, and (vi) a maintainability index
for each of the software applications.

#* #* #* #* #*

